Intelligent Drilling of Oil and Gas Wells Using Response Surface Methodology and Artificial Bee Colony

نویسندگان

چکیده

The oil and gas industry plays a vital role in meeting the ever-growing energy demand of human race needed for its sustainable existence. Newer unconventional wells are drilled extraction hydrocarbons that requires advanced innovations to encounter challenges associated with drilling operations. type drill bits utilized any operation has an economical influence on overall operation. selection suitable is challenging task driller while planning new wells. Usually, when it comes deciding bit type, generally, data previously present similar geological formation analyzed manually, making subjective, erroneous, time consuming. Therefore, main objective this study was propose automatic data-driven method target based Optimum Penetration Rate (ROP). Response Surface Methodology (RSM) Artificial Bee Colony (ABC) have been develop modeling approach optimum type. Data from three nearby Norwegian testing proposed approach. RSM implemented generate function ROP due strong data-fitting characteristic, ABC locate global optimal value ROP. model generated 95% confidence level compared existing Neural Network Genetic Algorithm. can also be applied over other field automate selection, which minimize error cost. United Nations Development Programme promotes industrial sectors sustainability.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

preparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis

کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.

hazard evaluation of gas condensate stabilization and dehydration unit of parsian gas refinery using hazop procedures

شناسایی مخاطرات در واحد 400 پالایشگاه گاز پارسیان. در این پروزه با بکارگیری از تکنیک hazop به شناسا یی مخاطرات ، انحرافات ممکن و در صورت لزوم ارایه راهکارهای مناسب جهت افزایش ایمنی فرا یند پرداخته میگردد. شرایط عملیاتی مخاطره آمیز نظیر فشار و دمای بالا و وجود ترکیبات مختلف سمی و قابل انفجار در واحدهای پالایش گاز، ضرورت توجه به موارد ایمنی در این چنین واحدهایی را مشخص می سازد. مطالعه hazop یک ر...

OPTIMIZATION OF SKELETAL STRUCTURAL USING ARTIFICIAL BEE COLONY ALGORITHM

Over the past few years, swarm intelligence based optimization techniques such as ant colony optimization and particle swarm optimization have received considerable attention from engineering researchers. These algorithms have been used in the solution of various structural optimization problems where the main goal is to minimize the weight of structures while satisfying all design requirements...

متن کامل

Root causes analysis of the Blow out of oil and gas wells in the drilling industry using Bow-Tie Analysis

Abstract Background and aims: One of the major concerns in the oil and gas drilling industry are Blowouts. Blowout could have severe consequences, such as fire and explosions, releases of toxic gases and environmental disasters. The aim of this study is to identify the root causes of kick and blowout in drilling industry. Methods: In this study, FTA investigates root causes of a k...

متن کامل

Identification and ranking risks of horizontal directional drilling for oil & gas wells by using fuzzy analytic network process, a case study for Gachsaran oil field wells

Risk ranking of Horizontal Directional Drilling (HDD) for gas and oil wells is a key criterion in the project feasibility, pricing and for introducing a risk management strategy that aims to reduce the number of failures in the installation phase and its negative consequences. HDD is currently widely used in drilling wells in Iran, but research in the area of identification and risks ranking of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2021

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su13041664